Polynomial Time Corresponds to Solutions of Polynomial Ordinary Differential Equations of Polynomial Length
نویسندگان
چکیده
منابع مشابه
Polynomial Time Corresponds to Solutions of Polynomial Ordinary Differential Equations of Polynomial Length: The General Purpose Analog Computer and Computable Analysis Are Two Efficiently Equivalent Models of Computations
The outcomes of this paper are twofold. Implicit complexity. We provide an implicit characterization of polynomial time computation in terms of ordinary differential equations: we characterize the class P of languages computable in polynomial time in terms of differential equations with polynomial right-hand side. This result gives a purely continuous (time and space) elegant and simple charact...
متن کاملextensions of some polynomial inequalities to the polar derivative
توسیع تعدادی از نامساوی های چند جمله ای در مشتق قطبی
15 صفحه اولPolynomial solutions of differential equations
A new approach for investigating polynomial solutions of differential equations is proposed. It is based on elementary linear algebra. Any differential operator of the form L(y) = k=N ∑ k=0 ak(x)y, where ak is a polynomial of degree ≤ k, over an infinite ground field F has all eigenvalues in F in the space of polynomials of degree at most n, for all n. If these eigenvalues are distinct, then th...
متن کاملPuiseux Series Solutions of Ordinary Polynomial Differential Equations : Complexity Study
We prove that the binary complexity of solving ordinary polynomial differential equations in terms of Puiseux series is single exponential in the number of terms in the series. Such a bound was given in 1990 by Grigoriev for Riccatti differential polynomials associated to ordinary linear differential operators. In this paper, we get the same bound for arbitrary differential polynomials. The alg...
متن کاملNewton Polygons of Polynomial Ordinary Differential Equations
In this paper we show some properties of the Newton polygon of a polynomial ordinary differential equation. We give the relation between the Newton polygons of a differential polynomial and its partial derivatives. Newton polygons of evaluations of differential polynomials are also described.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of the ACM
سال: 2017
ISSN: 0004-5411,1557-735X
DOI: 10.1145/3127496