Polynomial Time Corresponds to Solutions of Polynomial Ordinary Differential Equations of Polynomial Length

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Polynomial Time Corresponds to Solutions of Polynomial Ordinary Differential Equations of Polynomial Length: The General Purpose Analog Computer and Computable Analysis Are Two Efficiently Equivalent Models of Computations

The outcomes of this paper are twofold. Implicit complexity. We provide an implicit characterization of polynomial time computation in terms of ordinary differential equations: we characterize the class P of languages computable in polynomial time in terms of differential equations with polynomial right-hand side. This result gives a purely continuous (time and space) elegant and simple charact...

متن کامل

extensions of some polynomial inequalities to the polar derivative

توسیع تعدادی از نامساوی های چند جمله ای در مشتق قطبی

15 صفحه اول

Polynomial solutions of differential equations

A new approach for investigating polynomial solutions of differential equations is proposed. It is based on elementary linear algebra. Any differential operator of the form L(y) = k=N ∑ k=0 ak(x)y, where ak is a polynomial of degree ≤ k, over an infinite ground field F has all eigenvalues in F in the space of polynomials of degree at most n, for all n. If these eigenvalues are distinct, then th...

متن کامل

Puiseux Series Solutions of Ordinary Polynomial Differential Equations : Complexity Study

We prove that the binary complexity of solving ordinary polynomial differential equations in terms of Puiseux series is single exponential in the number of terms in the series. Such a bound was given in 1990 by Grigoriev for Riccatti differential polynomials associated to ordinary linear differential operators. In this paper, we get the same bound for arbitrary differential polynomials. The alg...

متن کامل

Newton Polygons of Polynomial Ordinary Differential Equations

In this paper we show some properties of the Newton polygon of a polynomial ordinary differential equation. We give the relation between the Newton polygons of a differential polynomial and its partial derivatives. Newton polygons of evaluations of differential polynomials are also described.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of the ACM

سال: 2017

ISSN: 0004-5411,1557-735X

DOI: 10.1145/3127496